Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins.

نویسندگان

  • Ivan R Piletic
  • Thomas E Matthews
  • Warren S Warren
چکیده

Ultraviolet-visible spectroscopy readily discerns the two types of melanin pigments (eumelanin and pheomelanin), although fundamental details regarding the optical properties and pigment heterogeneity are more difficult to disentangle via analysis of the broad featureless absorption spectrum alone. We employed nonlinear transient absorption spectroscopy to study different melanin pigments at near-infrared wavelengths. Excited-state absorption, ground-state depletion, and stimulated emission signal contributions were distinguished for natural and synthetic eumelanins and pheomelanins. A starker contrast among the pigments is observed in the nonlinear excitation regime because they all exhibit distinct transient absorptive amplitudes, phase shifts, and nonexponential population dynamics spanning the femtosecond-nanosecond range. In this manner, different pigments within the pheomelanin subclass were distinguished in synthetic and human hair samples. These results highlight the potential of nonlinear spectroscopies to deliver an in situ analysis of natural melanins in tissue that are otherwise difficult to extract and purify.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

“Fifty Shades” of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties

Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences i...

متن کامل

Involvement of microphthalmia in the inhibition of melanocyte lineage differentiation and of melanogenesis by agouti signal protein.

In mouse follicular melanocytes, production of eumelanins (brown-black pigments) and pheomelanins (yellow-brownish pigments) is under the control of two intercellular signaling molecules that exert opposite actions, alpha-melanocyte-stimulating hormone (alphaMSH) which preferentially increases the synthesis of eumelanins, and agouti signal protein (ASP) whose expression favors the production of...

متن کامل

Melanic variation underlies aposematic color variation in two hymenopteran mimicry systems

The stinging hymenopteran velvet ants (Mutillidae) and bumble bees (Apidae: Bombus spp.) have both undergone extensive diversification in aposematic color patterns, including yellow-red hues and contrasting dark-light body coloration, as a result of Müllerian mimicry. Understanding the genetic and developmental mechanisms underlying shifts in these mimetic colors requires characterization of th...

متن کامل

Properties and Function of Pyomelanin

Melanin pigments are the most common pigments produced in nature and these complex biopolymers are found in species of all biological kingdoms. There are several categories of melanins which include eumelanins, pheomelanins and allomelanins. Eumelanins and pheomelanins are produced from oxidation of tyrosine or phenylalanine to odihydroxyphenylalanine (DOPA) and dopaquinone. Pheomelanin results...

متن کامل

A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers.

We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 114 43  شماره 

صفحات  -

تاریخ انتشار 2010